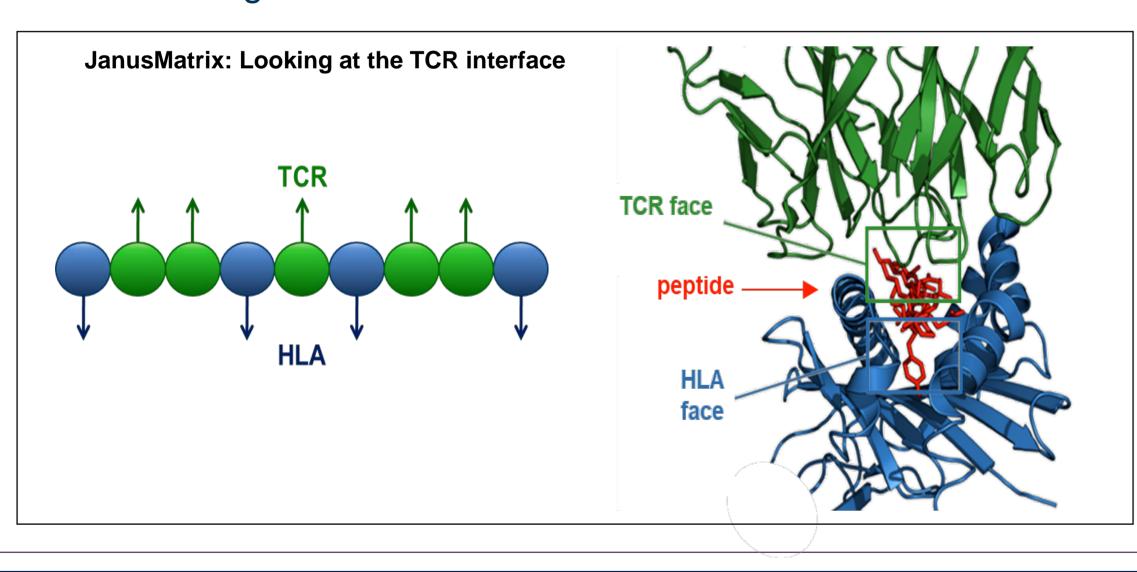


Aimee Mattei¹, Brian Roberts¹, Pooja Hindocha¹, Frances Terry¹, Guilhem Richard¹, Sarah E. Silk³, Carolyn M. Nielsen³, Rebecca Ashfield³, Simon J. Draper³, Vinayaka Kotraiah⁴, Amy R. Noe⁴, Mark C. Poznansky⁵, Ann E. Sluder⁵, Lenny Moise^{1,2}, William Martin¹, Anne S. De Groot^{1,2} ¹EpiVax, Inc., Providence, RI, USA, ²University of Rhode Island, Providence, RI, USA, ³Jenner Institute, University of Oxford, Oxford, UK, ⁴Leidos Life Sciences, Frederick, MD, USA, ³Jenner Institute, University of Oxford, Oxford, UK, ⁴Leidos Life Sciences, Frederick, MD, USA, ⁴Leidos Life Sciences, Frederick, MD, ⁴Leidos Life Sciences, Frederick, ⁴Leidos Life Sciences, Frederick, ⁴Leidos Life Sciences, Frederick, ⁴Leidos Life Sciences, Frederick, ⁴Leidos Life Sciences, ⁴Leidos Li ⁵Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA USA


Epidax 20 Years Fearless Science

PURPOSE

The ability of the immune system to develop a response against pathogens relies on the presentation of peptide antigens to CD4+ T-cells in the context of class II Human Leukocyte Antigen (HLA-II) molecules found on the surface on antigen presenting cells. Peptide binding to HLA is dependent on the position of specific amino acid "anchor residues" that interact with complementary binding pockets found within the HLA binding groove. Through the work of several laboratories, allele-specific binding profiles have been elucidated allowing for the development of in silico-based prediction tools, such as EpiMatrix developed by EpiVax Inc. Since peptide binding to HLA is a prerequisite for immunogenicity, the ability to predict which peptides within a given protein will bind HLA, provides an important first step in immunogenicity screening.

Furthermore, we also evaluate epitope similarity to the human proteome at the T cell receptor (TCR) interface, which may induce regulatory T cell responses, using the JanusMatrix algorithm¹. The combination of in silico predictions validated by in vitro assays provides a powerful method whereby targeted vaccines can be developed on demand in response to an outbreak. By screening a pathogen's proteome, we can rapidly narrow down the search for target epitopes allowing for focused vaccine design.

CONCLUSIONS

- > EpiMatrix and JanusMatrix algorithms efficiently identify putative T cell epitopes, distinguish likely inflammatory peptides from regulatory peptides, and are adaptable to a patient HLA-specific level of assessment.
- > Combining HLA-specific epitope content and "selfness" improves prediction of immunogenicity over either metric alone
- > Applying both tools in the early stages of vaccine design, antigen selection and engineering will result in the advancement of next generation vaccines where the minimal essential components of protection can be delivered without off-target or unintentionally suppressive signals deleterious to vaccine efficacy.

Modeling HLA binding and "self" conservation using in silico tools predicts immunogenic T cell epitopes in vaccinated individuals

Case Study 1: Malaria

METHODS

> EpiMatrix was used to identify class II epitopes providing broad HLA coverage in RH5, a highly conserved Plasmodium falciparum blood-stage antigen that has recently been assessed in a Phase I clinical trial with controlled human malaria infection (CHMI) JanusMatrix was used to analyze epitope similarity to human proteome at TCR interface

 \blacktriangleright Predicted epitopes were synthesized and validated in interferon gamma (IFN γ) ELISpot assays using PBMC from clinical trial vaccinees administered RH5.1, a fulllength recombinant RH5 protein vaccine.

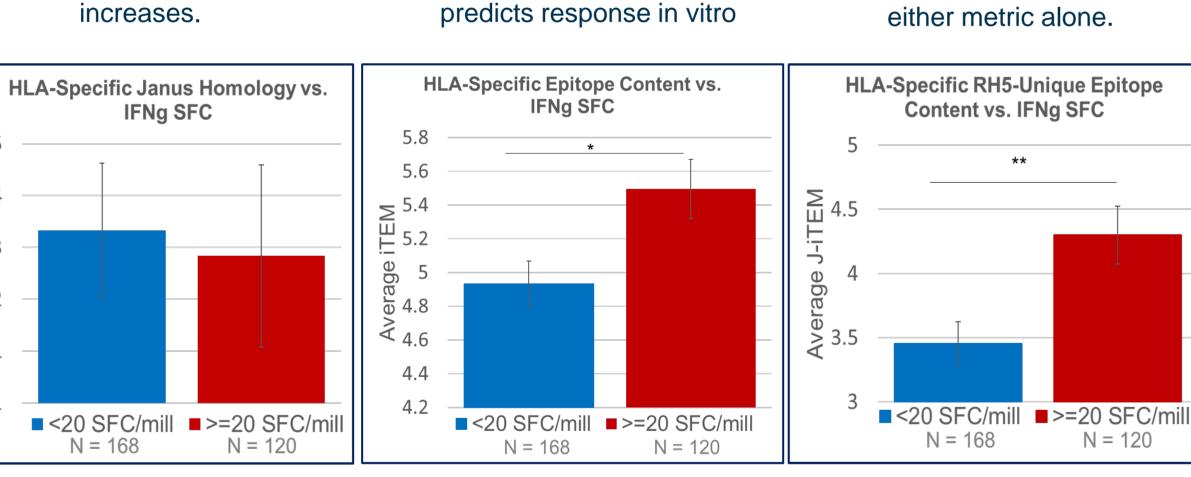
For each vaccinee's HLA-DR haplotype we calculated:

• an individualized T cell epitope measure (iTEM) score² • score adjusted for human cross-conservation using JanusMatrix (J-iTEM) Example of iTEM Scores

	DRB1*0101	DRB1*0301	DRB1*0401	DRB1*0701	DRB1*0801	DRB1*1101	DRB1*1301	DRB1*1501
LA freq. ³	10.4	11.9	24.4	14	15.1	15.5	15.1	20.5
RB1*0101								
RB1*0301								
RB1*0401								
RB1*0701								
RB1*0801								
RB1*1101								
RB1*1301								
RB1*1501								
Strongth of ITEM coores how Nedium								

iTEM:

HLA DR type that matches


epitope binding predictions

of iTEM score:

RESULTS

JanusMatrix:

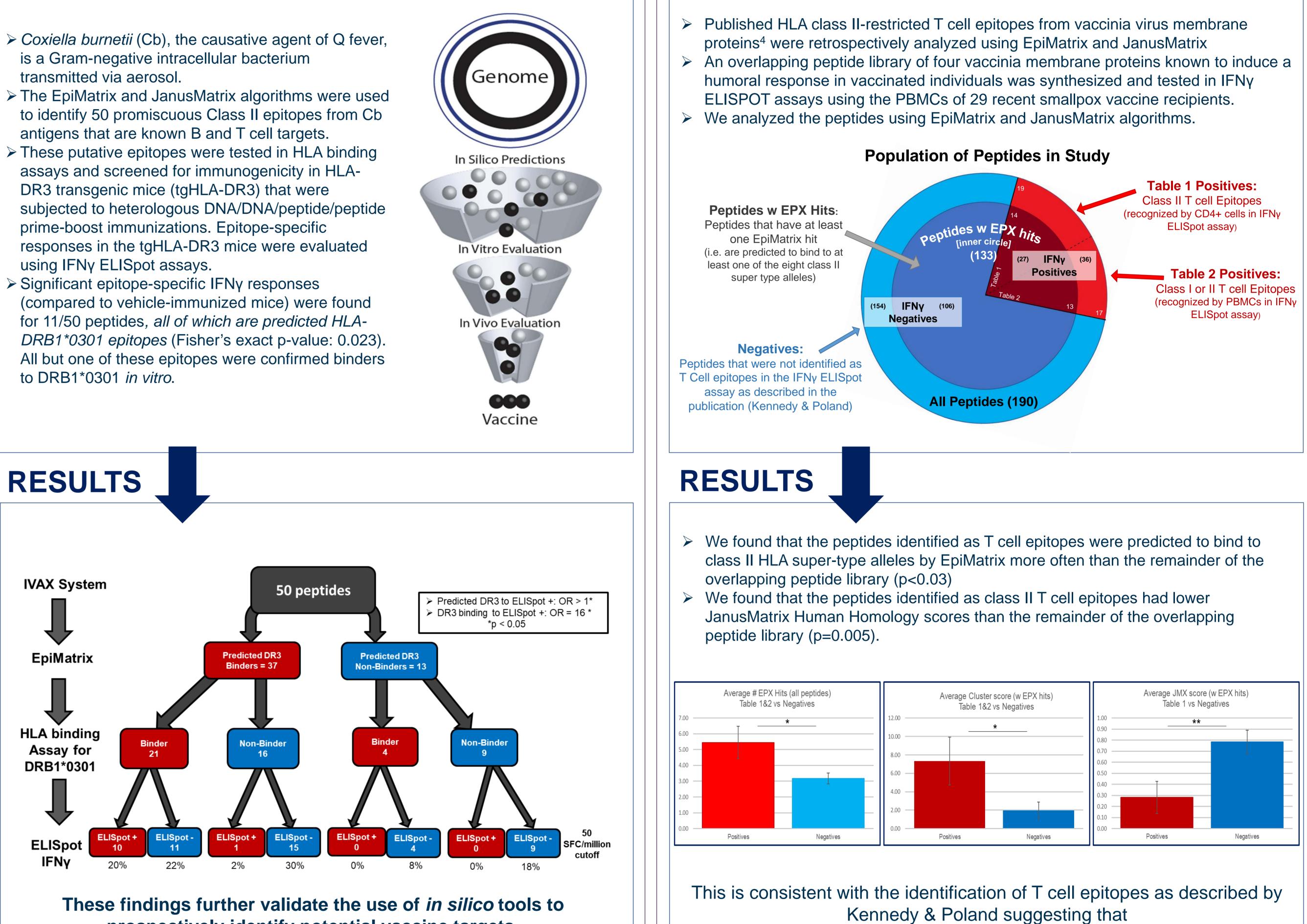
As "selfness" decreases, average inflammatory response

Peptides inducing positive responses were shown to have higher iTEM and J-iTEM scores (p<0.05 and p<0.01, respectively) for each vaccinee than negative peptides. Indicating that volunteers could present the peptides and respond with IFNy if the peptide was unique to malaria and non-tolerogenic.

J-iTEM:

combining HLA-specific epitope

content and selfness improves


prediction of immunogenicity over

N = 120

¹Moise et al. 2013; The two-faced T cell epitope Examining the host-microbe interface with JanusMatrix ²Cohen et al., J Biomed & Biotech; 2010; A Method for Individualizing the Prediction of Immunogenicity of Protein Vaccines and Biologic Therapeutics: Individualized T Cell Epitope Measure (iTEM) ³Southwood et al., J. Immunol. 1998; 160: 3363-3373 ⁴Kennedy & Poland, Virology 2010; 408(2): 232-240

METHODS

prospectively identify potential vaccine targets.

REFERENCES AND ACKNOWLEDGEMENTS

Case Study 1: This work was made possible through support provided by the Office of Infectious Diseases, Bureau for Global Health, U.S. Agency for International Development, under the terms of the Malaria Vaccine Development Program (MVDP) Contract AID-OAA-C-15-00071, for which Leidos, Inc. is the prime contractor. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the U.S. Agency for International Development.

Case Study 2: This work was supported by contract HDTRA1-15-C-0020 from the US Defense Threat Reduction Agency. Animal research protocols for studies with HLA-DR3 transgenic mice performed by EpiVax were reviewed and approved by TGA Sciences Incorporated Institutional Animal Care and Use Committee (P07-10R20-EV69, P07-10R20-EV71)

Case Study 3: Smallpox

METHODS

in silico binding predictions correlate to T cell responses in vitro.

