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H7N9 Influenza is Poorly Immunogenic

A new avian-origin influenza virus emerged near Shanghai in February 2013.
Human-to-human transmission of avian-origin H7/N9 influenza A has been
limited to a few clusters, but the high mortality rate (~30%) associated with

human infection has raised concern about the potential for this virus to
become a significant human pathogen.

* We used well-established immunoinformatics tools to
estimate the iImmunogenic potential of H7/N9 proteins.

« HA proteins derived from human-derived H7N9 strains
Isolated in 2013 contain fewer T cell epitopes than most
other circulating strains of influenza.

« H7N9 HA contains a predicted Treg-inducing epitope.

« Conservation of T cell epitopes with other strains of

A Texas/50/20128H3N2) zz ondomBoectation Influenza was very limited.

— ey e Based on our analysis, avian-origin H/N9 2013 appears

: :2@?::::3?::::2::2:32?22?5883E:Zzéi to be a "stealth” virus.

* Protective antibody responses in infection and
vaccination are reported to be delayed and weak.

» To prepare for an H/7N9 pandemic, vaccine strategies

that overcome the poor immunogenicity of H/N9 HA are
needed.

Immunogenicity Potential

HA®\/California/07/20098(HIN1) < E

HAR\/Victoria/361/2011H3N2) ——»

JanusMatrix separates the amino acid sequence of T cell epitopes
Into TCR-facing residues (epitope) and HLA binding cleft-facing
residues (agretope), then compares the TCR face to other putative T
cell epitopes.

T cell
receptor
face

Cross-reactive peptides:
* Are predicted to bind the same MHC allele.
« Share same/similar T cell-facing residues.

MHC-
binding
face

TCR cross-reactivity prediction:
« Given a protein or peptide, T cell epitopes are identified based on MHC contacts

N Q using EpiMatrix.
« JanusMatrix searches for potentially cross-reactive TCR by screening TCR-
T cell receptor face facing residues against a preloaded, EpiMatrix-processed reference database.

« Peptides with high cross-reactive potential are associated with reduced IFNy
secretion in PBMCs of healthy donors (Liu et al. Human Vaccines &

T Immunotherapeutics 2015).
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Optimized H7-HA Design

297 309
H7-HA PRYVKQRSLLLAT

306 318
H3-HA PRYVKONTLKLAT

297 309

H7-HA-Optl PRYVKQNTLKLAT

Close-up of local environment where mutations were made

The Treg-inducing epitope in H7-HA is replaced with a (right) shows stabilizing hydrogen and ionic bonding
broadly reactive and highly conserved H3-HA epitope contacts between introduced amino acids (pink labels) and
at the corresponding position. H7-conserved wild type amino acids (black labels).

Optl rH7-HA biophysical properties

Production and Testing of Treg Epitope-Deleted H/N9 HA

comparable to wild type
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Particle Size by Dynamic Light Scattering
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Thermal Stability by Differential Scanning Fluorimetry
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Previously identified monoclonal antibodies against WT rH7-HA (top panel)
and antibodies from two patients with anti H7-HA antibodies (bottom panel)

Optl rH7-HA maintains antigenic structures

In-vivo Immunogenicity: Humanized Mice
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Optl H7N9 VLP vaccine may protect
against H7N9 infection faster and at
lower doses than WT vaccine.
Modifications of H7-HA in Optl preserve

Optl rH7-HA stimulates higher anti-H7-
HA IgG titers and higher frequencies of
anti-H7-HA plasma cells than mice

recognize Optl rH7-HA with affinity equivalent to WT rH7-HA. immunized with wild type protein. neutralizing epitopes.

Second Generation H/N9 HA Engineered to Induce CD4* T Cell Memory

Seasonal Influenza Memory CD4* T Cell Epitope Selection Utilizing Immunoinformatics Tools

FILTER

Conservation in H1 and H3

Potential for broad reactivity

Reported T cell activity

Sequence similarity to H7N9

N7

Low potential for T cell cross-

reactivity with human sequences

Increase in immunogenicity and
reduced regulatory potential

N~

No reported T cell activity in H7

N~

Optimal 3D structure
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TOOL SELECTION CRITERIA

Conservatrix

Conservation in 50% of subtype-specific isolates

EpiMatrix

Potential to bind 4 or more 9 HLA class |l supertype
alleles

H1 H3
34,026 38,733
528 528
36 29

Five seasonal HA CD4+ T cell epitope 9-mers were selected

JanusMatrix

9-mer cross-conservation against IEDB for published
results

9 1 from >34,000 H1-HAs and >38,700 H3-HASs isolated between

1997 and 2017 for:

Homology search

>40% identity with corresponding 9-mers in 803 H7N9
HA human isolates identified between 2013 and 2017

8 12 e conservation

* Dbinding potential to class Il supertype alleles

JanusMatrix

Human Janus Homology <2 (9-mers with low potential
for inducing regulatory T cell epitopes)

EpiMatrix and
JanusMatrix

Significant increase in immunogenic potential or
decrease in regulatory potential compared to H7N9

Sequence alignment

Minimal or no overlap with reported H7N9 T cell
epitopes

Molecular modeling

Molecular dynamics trajectories closest to wild type
H7N9 HA. No structural concerns.
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Structural modeling of HA on an H7 backbone with

epitope modifications displays
no structural instability

Molecular Modeling of Second Generation H7/N9 HA
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Dynamics and Stability of Modified HA
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Root-mean-squared fluctuations (RMSF) reflects the backbone
dynamics for each protein residue. No regions of persistently high
fluctuations in Modified HA were observed.
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Root-mean-squared deviation (RMSD) is a measure of the overall dynamics and stability
of the system. Both WT and modified versions of HA are predicted to be stable.

Conclusions

= Treg epitope deletion preserves H7N9 HA antigenicity and increases immunogenicity.
= Engineering whole antigens to remove Treg epitopes and carry memory CD4* T cell epitopes — without perturbing native
antigen structure — supports enhanced antibody development against the native antigen.

Structural modeling and molecular dynamics simulation of 2"d Generation H7-HA predicts a stable structure.

References

1. De Groot AS, Ardito M, Terry F, Levitz L, Ross TM, Moise L, Martin W. Low immunogenicity predicted for emerging avian-origin H7N9: Implication for influenza

vaccine design. Hum Vaccin Immunother. 2013 May;9(5):950-6.

2. Liu R, Moise L, Tassone R, Gutierrez AH, Terry FE, Sangare K, Ardito MT, Martin WD, De Groot AS. H7N9 T-cell epitopes that mimic human sequences are less
Immunogenic and may induce Treg-mediated tolerance. Hum Vaccin Immunother. 2015;11(9):2241-52.

3. Wada, Yamato et al. A Humanized Mouse Model Identifies Key Amino Acids for Low Immunogenicity of H7N9 Vaccines. Sci Rep. 7 (2017): 1283.

For questions regarding in silico antigen screening and vaccine design: Katie Porter kporter@epivax.com

www.epivax.com



