

Tregitopes Induce Active Tolerance in Autoimmune Diabetes & Allergy

Anne S. De Groot MD

CEO/CSO, EpiVax, Inc. Director, Institute for Immunology and Informatics Professor (Research) Univ. Rhode Island March 2019

- ✓ Tregitopes what are they?
- ✓ **Pre-clinical studies with Tregitopes**...
- ✓ Have Tregitopes been in the clinic?
- ✓ What's the EpiVax plan for Tregitopes?

✓ Tregitopes – what are they?

✓ Pre-clinical studies with Tregitopes...

Have Tregitopes been in the clinic?

✓ What's the EpiVax plan for Tregitopes?

What are Tregitopes?

- Short, linear peptide sequences that bind to HLA and activate *regulatory* T cells
- Identified by immunoinformatics searching epitopes that are homologous to human genome at the TCR face
- Discovered and patented by Annie De Groot and Bill Martin at EpiVax
- Can be co-formulated or attached to proteins to provide antigen-specific tolerance
- Wide range of therapeutic applications

http://bit.ly/Treg1

Tregitope Technology=A Set of peptides

Identification of highly conserved epitopes while screening Mabs

- 15-20 mer peptides in conserved regions
- Strong signals for T cells ("EpiBars")
- Highly conserved among IgG molecules
- Not conserved across Ig subtypes (IgG -> IgA)
- Relatively conserved across species (e.g. mouse)

De Groot A.S., et al., Activation of Natural Regulatory T cells by IgG Fc-derived Peptide "Tregitopes". Blood, 2008,112: 3303. <u>http://tinyurl.com/ASDeGroot-Blood-2008</u>

EpiVax-Confidential

Original Publication

Published in Blood, 25 July 2008

Reprints available on request

IMMUNOBIOLOGY

Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes"

Anne S. De Groot,^{1,2} Leonard Moise,¹ Julie A. McMurry,¹ Erik Wambre,³ Laurence Van Overtvelt,³ Philippe Moingeon,³ David W. Scott,⁴ and William Martin¹

1EpiVax, Providence, RI; 2University of Rhode Island, Providence, RI; 3Stallergenes, Anthony, France; 4University of Maryland, College Park, MD

We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc fragment of IgG that are capable of specifically activating CD4+CD25_{Hi}FoxP3+ natural regulatory T cells (nT_{Regs}). Coincubation of these regulatory T-cell epitopes or "Tregitopes" and antigens with peripheral blood mononuclear cells led to a suppression of effector cytokine secretion, reduced proliferation of effector T cells, and caused an increase in cell surface markers associated with T_{Regs} such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism for the Immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nT_{Regs} that tips the resulting Immune response toward tolerance rather than Immunogenicity. (Blood. 2008;0:000-000)

What's the Excitement About?

- Tregitopes belong to a novel class of immunotherapeutics
- They induce expansion and activation of Tregs and can be used to teach the immune system to tolerize against immunogenic proteins
- Tregitopes are a new therapy for autoimmune disease with additional applications in transplant and allergy
- Can be co-formulated or attached to proteins to provide antigen-specific tolerance
- Relevant to immunogenicity of monoclonal antibodies and transplantation
- Wide range of therapeutic applications

Tregitopes may explain (one) IVIG mechanism of action

Confidential EpiVax

IVIG expands Tregs in Human Diseases = Tregitope effect

Time from onset of EGPA

EpiVax

High-dose Intravenous Immunoglobulin Treatment Increases Regulatory T Cells in Patients with Eosinophilic Granulomatosis with Polyangiitis

NAOMI TSURIKISAWA↓, HIROSHI SAITO, CHIYAKO OSHIKATA, TAKAHIRO TSUBURAI and KAZUO AKIYAMA

http://www.jrheum.org/cont ent/39/5/1019.long

Confidential EpiVax

High dose but not low dose IVIG expands Tregs in Human Diseases

Patients treated with high-dose intravenous

immunoglobulin show selective activation of regulatory T

cells

Clinical and Experimental Immunology (2013)

Authors:

Angela S.W. Tjon, MD, Thanyalak Tha-In, MD, Herold J.Metselaar, PhD, Rogier van Gent, PhD, Luc J.W. van der Laan, PhD, Zwier M.A. Groothuismink, BSc, Peter A.W. te Boekhorst, MD, PhD, P. Martin van Hagen, MD, PhD, Jaap Kwekkeboom, PhD

EpiVax

High dose (but not low dose) IVIG expands Tregs in Humans (Tjon et al)

EpiVax

Tregitopes as the active principle in IVIG and Fc-based biologics

Patients treated with high-dose intravenous immunoglobulin show selective activation of regulatory T cells. Tjon, A.S.W. et al. (2013) Clin. Exp. Immunol. 173:259-267.

Intravenous Immunoglobulin Expands Regulatory T Cells in Autoimmune Rheumatic Disease. Bayry, J. et al. (2012) J. Rheumatology 39:450-51.

Cousens, L. et al Hum Immunol. 2014;12:1139-46.

Intravenous immunoglobulins promote skin allograft acceptance by triggering functional activation of CD4+Foxp3+ T cells. Tha-In T. et al. (2010) Transplantation 89:1446-55.

IVIG prevents inflammation in vivo: experimental autoimmune encephalomyelitis and Herpes Simplex Virus-induced encephalitis. Ephrem et al. Blood 2008 and Ramakrishna Plos Pathogens 2011

Dendritic cell immunoreceptor: A novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells Massoud, et al, <u>www.jacionline.org/article/S0091-</u> <u>6749(13)01476-0/fulltext</u>

✓ Tregitopes – what are they?✓ Mechanism of Action

✓ Pre-clinical studies with Tregitopes... ✓ Have Tregitopes been in the clinic? ✓ What's the EpiVax plan for Tregitopes?

il. Mechanism of Action

Proposed Tregitope mechanism of action

(killing of Teff by Tregs? Ag-specific T cells are rendered non-respo or become induced or iTregs (Ag-specific)

Proposed Tregitope mechanism of action

ANTIGEN PRESENTING CELL: - Are Tregitopes eluted?

Are Teffectors converted to adaptive Treg? Are there other effects (killing of Teff by Tregs? Ag-specific T cells are rendered non-responsive or become induced or iTregs (Ag-specific) Novartis publication questions but confirms Tregitopes →Shows Tregitopes are eluted from APC (MAPPS)

Immunity, Inflammation and Disease

Open Access

ORIGINAL RESEARCH

Tregitopes and impaired antigen presentation: Drivers of the immunomodulatory effects of IVIg?

Laetitia Sordé ¹, Sebastian Spindeldreher², Ed Palmer³, & Anette Karle¹

e Peptides Eluted From IgG by Novartis Team Are Tregitopes

EpiVax

¹Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Basel, Switzerland ²Novartis Institute for Biomedical Research, PK Sciences, Biologics, Basel, Switzerland

³Department of Biomedicine, University Hospital Basel, Transplantation Immunology and Nephrology, Basel, Switzerland

Abstract

Introduction: Although intravenous immunoglobulin (IVIg) is commonly used in the clinic to treat various autoimmune and severe inflammatory diseases, the mode of action is not fully elucidated. This work investigates two proposed mechanisms: (1) the potential role of regulatory T-cell epitopes (Tregitopes) from the constant domain of IgG in the immunosuppressive function of IVIg; and (2) a potential impact of IVIg on the ability of antigen presenting cells (APCs) to present peptides. Methods and Results: Investigation of the HLA class II peptide repertoire from IVIg-loaded dendritic cells (DCs) via MHC-associated peptide proteomics (MAPPs) revealed that numerous IgG-derived peptides were strongly presented along the antibody sequence. Surprisingly, Tregitopes 167 and 289 did not show efficient natural presentation although they both bound to HLA class II when directly loaded as "naked" peptides on human DCs. In addition, both Tregitopes could not reproduce the inhibitory effect of IVIg in a human in vitro T-cell proliferation assay as well as in vivo in mice. MAPPs data demonstrate that presentation of peptides from several antigens remained unchanged even when competed with high doses of IVIg, in both human and mouse.

Conclusion: These data suggest that the effects mediated by IVIg are not caused by Tregitopes nor by impaired antigen presentation. (ADG: This statement not correct – they didn't recognize all Tregitopes – see next slides). Confidential EpiVax

Eluted Tregitopes/Tregitope homologs in Sordé et al. Found in Manuscript Supplement Information

A quick glance through the supplement information reveals that there are other Tregitope sequences (or slight variants) that are also presented by HLA-DR. Table below shows a summary of some of these peptides, and the donors IDs for DCs from which these peptides were eluted. Tregitope 9mers are highlighted in green. See US Patent US20090018067 for full list of Tregitopes. Note: not all variants are captured here.

	Tregitope Peptide ID	Sequence	Donor	Eluted Sequence	EpiMatrix Hits	JanusMatrix Human
	hTreg_IgGh-009A	GGL <mark>VQPGGSLRLSCAASG</mark> FTF	11	VQPGGSLRLSCAASGLPL	11	18.55
	hTreg_lgGh-009B	GGL <mark>VQPGRSLRLSCAASG</mark> FTF	15	SGGGV <mark>VQPGRSLRL</mark> PCAASGFIF	11	12
	hTreg_IgGh-009B	u	15	VESGGGAV <mark>QPGRSLRL</mark> SCS	5	8
	hTreg_IgGh-009B	u	15	VESGGGV <mark>VQPGRSLRL</mark> SCAVS	7	8.71
	hTreg_lgGh-009B	u	17	SGGGV <mark>VQPGRSLRLS</mark> CAGSGLTFERY	18	3.61
	hTreg_lgGh-029B	MH <mark>WVRQAPGKGL</mark> EWV	12	YGMS <mark>WVRQAPEKGLE</mark> WVSSITGSGGSTY	18	4
	hTreg_lgGh-074	VDT <mark>SKNQFSLRLSSVTAA</mark> DTA	13	SKN <mark>DFSLNLSSVT</mark> AADTAV	12	6
	hTreg_lgGk-041	LA <mark>WYQQKPGKA</mark> PKL	18	N <mark>WYQQKPGKA</mark> PKVLVHTASTL	9	11.33
	hTreg_IgGI-039	VS <mark>WYQQHPGKA</mark> PKL	16	YQQLPGKAP KLLIYSDNLR	7	5.86

Proposed Tregitope mechanism of action

ANTIGEN PRESENTING CELL: - Are Tregitopes eluted?

External validation of Tregitopes (IVIG) from Sette and Franco ("re-discovery")

Autoimmunity

http://informahealthcare.com/aut ISSN: 0891-6934 (print), 1607-842X (electronic) 2015 May ; 48(3): 181–188 Autoimmunity, Early Online: 1-8 © 2015 Informa UK Ltd. DOI: 10.3109/08916934.2015.1027817

informa healthcare

ORIGINAL ARTICLE

ine specificities of natural regulatory T cells after IVIG therapy in	Rediscovery of			
batients with Kawasaki disease	Tregitopes			
ane C. Burns ¹ , Ranim Touma ¹ , Yali Song ¹ , Robert L. Padilla ¹ , Adriana H. Tremoulet ¹ , John Sidney ² , Messandro Sette ² , and Alessandra Franco ¹	By Franco and Sette			

¹Department of Pediatrics, Rady Children's Hospital, School of Medicine, University of California San Diego, La Jolla, CA, USA and ²Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

Abstract: The activation of natural regulatory T cells (nTreg) recognizing the heavy constant region (Fc) of IgG is an important mechanism of action of intravenous immunoglobulin (IVIG) therapy in Kawasaki disease (KD). Lack of circulating Fc-specific nTreg in the sub-acute phase of KD is correlated with the development of coronary artery abnormalities (CAA). Here, we characterize the fine specificity of nTreg in sub-acute (2- to 8-week post-IVIG) and convalescent (1- to 10-year post-IVIG) KD subjects by testing the immunogenicity of 64 peptides, 15 amino acids in length with a 10 amino acid-overlap spanning the entire Fc protein. About 12 Fc peptides (6 pools of 2 consecutive peptides) were recognized by nTreg in the cohorts studied, including two patients with CAA. To test whether IVIG expands the same nTreg populations that maintain vascular homeostasis in healthy subjects, we compared these results with results obtained in healthy adult controls. Similar nTreg fine specificities were observed in KD patients after IVIG and in healthy donors. These results suggest that T cell fitness rather than T cell clonal deletion or anergy is responsible for the lack of Fc-specific nTreg in KD patients who develop CAA. Furthermore, we found that adolescents and adults who had KD during childhood without developing CAA did not respond to the Fc protein in vitro, suggesting that the nTreg response induced by IVIG in KD patients is shortlived. Our results support the concept that peptide epitopes may be a viable therapeutic approach to expand Fc-specific nTreg and more effectively prevent CAA in KD patients.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784966/pdf/nihms763445.pdf

Confidential EpiVax

Sette and Franco IVIg study: Peptide Pools induce IL-10 On inspection: Peptides inducing IL 10 are Tregitopes

Green underline indicates Tregitope 9-mer (Tregitope 167 in pools 6 and 7, Tregitope 289 in pool 18 and 19)

Proposed Tregitope mechanism of action

ANTIGEN PRESENTING CELL: - Are Tregitopes eluted?

or become induced or iTregs (Ag-specific)

Modulation of Antigen Presenting Cells CD11c+ CD86+

Down regulation of CD86 In APC-T cell / Tregitope co-culture

EpiVax

Modulation of Antigen Presenting Cells CD11c+ MHC II+

Down regulation of HLA DR In APC- T cell / Tregitope co-culture

←Tregitope 029 (human version)

EpiVax

UNPUBLISHED AND CONFIDENTIAL DO NOT REPOST

Modulation of Antigen Presenting Cells CD11c+ ILT3+

Up regulation of ILT3 In APC-T cell/Tregitope co-culture

EpiVax

hTregitope 029B → CD110+ILT3+ 0.72 0.72% ↓ CD11c+ILT3-3 CD11c+ILT3-5.67

Tregitope Homolog in Clinical Studies = Edratide

EpiVax

Clinical trials and drug discovery

Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study

Murray B Urowitz,¹ David A Isenberg,² Daniel J Wallace³

To cite: Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study. *Lupus Science & Medicine* 2015;2: e000104. doi:10.1136/lupus-2015-000104

 Additional material is available. To view please visit the journal (http://dx.doi.org/ 10.1136/lupus-2015-000104).

Received 20 May 2015 Revised 6 July 2015 Accepted 10 July 2015

ABSTRACT

Objective: To evaluate the safety and efficacy of hCDR1 (Edratide) in patients with systemic lupus erythematosus (SLE).

Methods: Patients (n=340) with SLE ≥4 ACR criteria (4–11, mean 7) with active disease (SLEDAI-2K of 6–12). Patients were on average 7.1 years postdiagnosis and their organ involvement was mainly musculoskeletal, mucocutaneous and haematologic. Placebo or Edratide was administered subcutaneously weekly at doses of 0.5, 1.0 or 2.5 mg. The co-primary endpoints were SLEDAI-2K SLE Disease Activity and Adjusted Mean SLEDAI (AMS) reduction in patients compared with controls using a landmark analysis. Secondary outcomes were improvement in British Isles Lupus Assessment Group (BILAG) Responder Index and medicinal flare analysis.

Results: Edratide was safe and well tolerated. The primary endpoints based solely on SLEDAI-2K and AMS were not met. The secondary predefined endpoint, BILAG, was met for the 0.5 mg Edratide arm in the intention to treat (ITT) cohort (N=316) (OR=2.09, p=0.03) with trends in the 1.0 and 2.5 mg

KEY MESSAGES

- Edratide demonstrated efficacy in one and possibly more clinically meaningful endpoints.
- Dose ranging studies demonstrated the 0.5 mg subcutaneous weekly was the most effective dose.
- There were no safety signals in this 26 week study.

Due to the complex nature of the disease, progress in developing new SLE treatment modalities has been slow.⁹ ¹⁰ Until the approval by the Food and Drug Administration in 2011 of belimumab,¹¹ no new drugs had been approved for the treatment of SLE since 1955. There is therefore a clear need for new therapeutic agents.¹²

hCDR1 (Edratide) is a novel synthetic peptide of 19 amino acid residues (H-G-Y-Y-W-S-W-I-R-Q-P-P-G-K-G-E-E-W-I) based ←Tregitope 029 (humanized anti idiotype from murine IgG)

Effect of Tregitope on APC / Tregs c/w Edratide) Tregitope 029B vs. Edratide (029 tested in SLE patients) EpiVax

	EpiVax 029B	Edratide
MHC II	<mark>↓</mark>	₩
CD80	<mark>↓</mark>	<mark>↓</mark>
CD86	<mark>↓</mark>	₩
IL-T3	<u>↑</u>	No Data
IL-10	^	$\mathbf{\Psi}$
IFNγ	No Data	$\mathbf{\Psi}$
TGFβ	No Data	^
Tregs	1	1
IL-7	No Data	$\mathbf{\Psi}$
B Cells	No Data	$\mathbf{\Psi}$

←Tregitope 029 /APC

EpiVax = Human Tregitope, Edratide = Idiotype Tregitope

←Tregitope 029 /T cells

UNPUBLISHED AND CONFIDENTIAL DO NOT REPOST

Proposed Tregitope mechanism of action

ANTIGEN PRESENTING CELL: - Are Tregitopes eluted?

Are Teffectors converted to adaptive Treg? Are there other effects (killing of Teff by Tregs?) Ag-specific T cells are rendered nonresponsive or become induced or iTregs (Ag-specific)

Tregitopes induces antigen-specific Regulatory T cells in vivo

а

0

0

10 20 30

µg/ml AAV peptide

40 50

© The American Society of Gene & Cell Therapy

original article.

Modulation of CD8⁺ T cell responses to AAV vectors with IgG-derived MHC class II epitopes Daniel J Hui¹, Etiena Basner-Tschakarjan¹, Yifeng Chen^{1,2}, Robert J Davidson¹, George Buchlis^{1,3}, Mustafa Yazicioglu¹, Gary C Pien¹, Jonathan D Finn¹, Virginia Haurigot¹, Alex Tai¹, David W Scott⁴, Leslie P Cousens⁵, Shangzhen Zhou¹, Anne S De Groot^{5,6} and Federico Mingozzi¹

Figure 5 Antigen-specificity of Tregitopes-induced suppression of CTL responses is mediated by MHC I. (a) CTL assay in which target cells were loaded with the MHC I epitope VPQYGYLTL from AAV and incubated with HLA-matched AAV-specific Teff alone (AAV, dashed line), or Teff mixed at a 1:1 ratio with negatively-selected CD4⁺ T cells from AAV+hTreg167 restimulated PBMC (AAV+[AAV-hTreg167 CD4⁺], black line), or Teff mixed at a 1:1 ratio with negatively-selected CD4⁺ T cells from EBV+hTreg167 restimulated PBMC (AAV+[EBV-hTreg167 CD4⁺], gray line). (b) CTL assay

С

Kaveri and Bayry, Trends in Immunology IVIg Review Tregitope as one of the MOA of IVIG

Trends in Immunology

EpiVax

Forum

Circulating Normal IgG as Stimulator of Regulatory T Cells: Lessons from Intravenous Immunoglobulin

Mohan S Maddur,^{1,2,3,5} Srini V. Kaveri, 1,2,3,4 and Jagadeesh Bayry^{1,2,3,4,*}

Intravenous immunoglobulin (IVIG),

Accordingly, deficiency of IgG, as in the benefits both in autoimmune disease case of common variable immunodefi- patients and experimental models ciency (CVID) or X-linked agammaglobu- [2,4]. High-dose IVIG therapy exerts linemia, leads to increased predisposition sustained effect on Treg cells and to recurrent infections. Paradoxically, despite a gradual decline, the effect immunodeficiencies are also associated on Treg cells goes beyond the half-life with autoimmunity and inflammatory con- of infused IgG in majority of the patients ditions, suggestive of a dysregulated who respond to this therapy [4]. As IVIG immune status. Intriguingly, replacement is nothing but pooled IgG from normal therapy with low-dose IVIG (400 mg/kg) consisting of intact IgG molecules purified from the pooled plasma of several thousand healthy blood donors, not only prevents recurrence of infectious diseases but also suppresses autoimmune and inflammatory responses. These observations

of defense against invading pathogens. Treg cells correlates with its therapeutic donors, the effect of IVIG on Treg cells likely represents a primordial function of circulating IgG in regulating immune homeostasis.

> Treg Cell Expansion by IVIG: How Many Mechanisms after All?

Confidential EpiVax

Tregitope as (one of the) mechanism of action by IVIG Kaveri and Bayry, Trends in Immunology 2019

EpiVax

✓ Tregitopes – what are they?

✓ Pre-clinical studies with Tregitopes...

✓ Have Tregitopes been in the clinic?✓ What's the EpiVax plan for Tregitopes?

Clinical applications of Tregitopes

Model systems

- 1. Autoimmune diseases
- 2. Transplantation
- 3. Inflammatory Bowel Disease
- 4. Enzyme Replacement Therapy
- 5. ASATI : Allergy

Tregitope validation in vivo

EpiVax

In vivo Model	lmmun ogen	Delivery	Clinical application	Findings	Publication	
C57BL/6	OVA	DMSO	Tolerance induction	Suppress Ag-specific T cell proliferation	Cousens et al Human immunology 2014	
C57BL/6	MOG	CFA	MS	Induce Tregs, Reduce of EAE symptoms	Elyaman et al Neur Res Int 2011	
NOD /ShiLtJ	PPI	Liposome	T1D	Reduce incidence of Type 1 diabetes when co administered with PPI	Cousens et al J of diabetes Research 2013	
Balb/C	none	IFA	T1D	Suppress CD4+ response and are not immunogenic	Su et al JLB 2012	
NOD /ShiLtJ	none	IFA	T1D	Reduce Type 1 diabetes after onset	Cousens et al J of diabetes Research 2013	
D011.10 TCR Tg	OVA	IFA	ERT	Suppress Ag-specific T cell proliferation and induce Ag specific Treg	Cousens et al J of diabetes Research 2013	
ABM TCR tg	bm12	DMSO	Tolerance induction	Induce Ag-specific Tregs	Cousens et al Human immunology 2014	
HLADR4 Tg	HDM	saline	Allergy	Suppress immune response to the antigen	De Groot et al Blood 2008	
C57BL/6	AAV	encoded	gene therapy	Reduce immune response to AAV capsid	Hui et al Mol Ther 2013	
Balb/C	AAV	encoded	inflammatory colitis	Reduce severity of the disease, increase Treg infiltrates in colon	Van der Marel et al,World J Gastroenterol 2012	
C57BL/6	OVA	DMSO	asthma	Reduction airway reactivity, Treg induction	Mazer and Massoud, Not published	
NOD /ShiLtJ	N/A	HSA-fusion	T1D	Decrease T1D associated mortality when co-administered with PPI	Not Published	

Tregitope validation checklist

- ✓ Tregitopes induce adaptive tolerance in C57BI/6, D011.10, OTII
- ✓ Tregitopes suppress/treat diabetes in NOD model (Scott/EpiVax)
- ✓ Tregitopes suppress transplant rejection in CD28 KO mice (Najafian)
- ✓ Tregitopes suppression = IVIG in OVA/Allergy Model (Mazer)
- ✓ Tregitopes suppress immune responses to AAV capsid (Mingozzi)
- ✓ Tregitopes suppress immune responses to GAA (Myozyme) (Koeberl)
- ✓ *Tregitopes cause expansion of Tregs iTreg* + *nTreg* (Cousens)

Tregitopes Reduce IL4 and Antibody Responses in an Allergy Model

Confidential EpiVax

Blood, 2008,112: 3303

Immunomodulatory properties of Tregitopes in a mouse model of asthma (allergic airway disease - AAD)

Dr. Bruce Mazer McGill University Epivax Update 20180227

B. Mazer: IVIg reduces steroid dependency in asthma: Do Tregitopes have the same effect?

Mazer BD and Gelfand EW, J Allergy Clin Immunol 1991; 87:976-83.

Introduction

EpiVax

Tregitopes in a Mouse Model of Asthma

OVA/IVIg or OVA/Tregitopes increase % CD4+CD25+Foxp3+ Tregs in lung

- Administration of Tregitopes caused some Treg expansion in the lungs
- Higher doses did not result in expansion possibly due to aggregation of the Tregitope peptides at higher doses.

Tregitope treatment with Allergen Do Tregitopes abrogate allergy responses?

Marieme Dembele PhD Bruce Mazer MD McGill University

Ragweed-induced model of asthma

Ragweed model

Phenotyping using flow cytometry Granulocytes T regulatory cells Intracellular Cytokines production by CD4+ T cells

Histology

Blood: IgE Antigen-specific IgE

Tregitopes to Prevent Type 1 Diabetes – Co-administered with PPI in Liposomes

T1D ASATI with Albumin-Tregitope Fusions

Bioconjugation

- Chemically modify peptide to allow covalent attachment to albumin molecule:
 - o Lysine
 - \circ Thyrosine
 - $\circ~$ Free Thiol (SH)
- Free thiol is the most widely used conjugation route:
 - Specifically reactive with maleimide groups
 - 1:1 Stoichiometric peptide loading

Albumin Fusion

- Contiguous cDNA for target protein/peptide with DNA encoding albumin produces a single protein
- Flexible conjugation options:
 - o N or C terminal
 - o Combinations
 - o Linker molecules
 - Cleavage sites

ASATI in T1D

Human Serum Albumin causes Death in NOD mice (Yu et al.)

- NOD mice are intolerant of Human HSA.
- Of methods tested to overcome this issues, split dosing was the preferred.
- Split dosing was not required for Tregitope-HSA; the mice did not anaphylax.
 (a)

Fig. 2. Anaphylaxis is non-obese diabetic (NOD)-specific, but not human alpha-1 antitrypsin (hAAT)-specific. (a) Mortality rates in NOD, non-obese resistant and Balb/c mice (8 weeks of age) injected with hAAT (Prolastin® or Aralast®), human albumin (Albuminar®) or mouse albumin as indicated (n = 10, 2 mg/mouse, two injections per week); (b) anti-hAAT immunoglobulin G (IgG) levels. Each line represents the average optical density (OD) at 100× dilution; (c) anti-hAAT IgE levels. Each line represents the average OD at 50× dilution.

EpiVax

Kaplan-Meier survival curve for HSA Toxicity Pilot Study in NOD mice

EpiVax

NOD mice were injected s.c. with 800ug total dose of HSA.

- - HSA single dose mice were injected (800ug/100uL) once at each time point (Day 0, 13, 27, 41)

HSA split dose-time injections of 400ug/100uL (Day 0/1, 13/14, 27/28, 41/42)

--- HSA split dose-location of 400 ug/100uL (2 flanks; Day 0, 13, 27, 41)

Confidential EpiVax

+++++ HSA + diphenhydramine, where diphenhydramine was administered 15 minutes before each HSA single dose on Day 13, 27, 41.

T1D-ASATI: Tregitope-HSA fusion Comparison of HSA-Fusion E + PPI peptides to HSA only

4SATI in T1D

EpiVax

T1D-ASATI: Tregitope-HSA fusion Comparison of HSA-Fusion E + PPI peptides to HSA-only

EpiVax

✓ Tregitopes – what are they?

✓ Mechanism of Action

✓ Pre-clinical studies with Tregitopes...

✓ Have Tregitopes been in the clinic?

✓ What's the EpiVax plan for Tregitopes?

Phase II clinical study of Edratide (hCDR1) in systemic lupus ervthematosus (SLE)

Clinical trials and drug discovery

LUPUS SCIENCE & MEDICINE[®]

To cite: Urowitz MB

Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study

Murray B Urowitz,¹ David A Isenberg,² Daniel J Wallace³

Placebo or Edratide was administered subcutaneously weekly at doses of 0.5, 1.0 or 2.5 mg. The co-primary

endpoints were SLEDAI-2K SLE Disease Activity and

Adjusted Mean SLEDAI (AMS) reduction in patients

compared with controls using a landmark analysis.

Lupus Assessment Group (BILAG) Responder Index

Results: Edratide was safe and well tolerated. The

primary endpoints based solely on SLEDAI-2K and

endpoint, BILAG, was met for the 0.5 mg Edratide arm

(OR=2.09, p=0.03) with trends in the 1.0 and 2.5 mg

Composite SLE Responder Index of the ITT cohort.

Post hoc analysis showed that the BILAG secondary

AMS were not met. The secondary predefined

in the intention to treat (ITT) cohort (N=316)

doses. There was also a positive trend in the

and medicinal flare analysis.

Secondary outcomes were improvement in British Isles

ABSTRACT

Isenberg DA, Wallace DJ Objective: To evaluate the safety and efficacy of Safety and efficacy of hCDR hCDR1 (Edratide) in patients with systemic lupus (Edratide) in patients with erythematosus (SLE) active systemic lupus Methods: Patients (n=340) with SLE ≥4 ACR criteria ervthematosus: results of (4-11, mean 7) with active disease (SLEDAI-2K of phase II study, Lupus 6-12). Patients were on average 7.1 years post-Science & Medicine 2015:2: e000104. doi:10.1136/lupusdiagnosis and their organ involvement was mainly 2015-000104 musculoskeletal, mucocutaneous and haematologic.

► Additional material is available. To view please visit the journal (http://dx.doi.org/ 10.1136/lupus-2015-000104).

Received 20 May 2015 Revised 6 July 2015 Accepted 10 July 2015

encouraging clinically significant effects noted in some of the endpoints support the need for additional longer term Edratide studies that incorporate recent advances in the understanding and treatment of SLE, including steroid treatment algorithms, and using a composite primary endpoint which is likely to include BILAG. Trial registration number: NCT00203151.

KEY MESSAGES

Edratide demonstrated efficacy in one and possibly more clinically meaningful endpoints.
 Dose ranging studies demonstrated the 0.5 mg subcutaneous weekly was the most effective dose.
 There were no safety signals in this 26 week study.

Due to the complex nature of the disease, progress in developing new SLE treatment modalities has been slow.9 10 Until the approval by the Food and Drug Administration in 2011 of belimumab,¹¹ no new drugs had been approved for the treatment of SLE since 1955. There is therefore a clear need for new therapeutic agents.1 hCDR1 (Edratide) is a novel synthetic peptide of 19 amino acid residues (H-G-Y-Y-W-S-W-I-R-Q-P-P-G-K-G-E-E-W-I) based on the complementarity-determining region 1 (CDR1) of a human anti-DNA mAb that expresses a major idiotype denoted 16/6 Id.^{13 14} Treatment with hCDR1 leads to a cascade of events that culminate in the downregulation of SLE-associated autoreactive T and B cells and in the clinical amelioration of lupus. hCDR1 is therefore a candidate for treatment of patients with SLE.15

In mouse models of SLE, treatment with hCDR1 significantly reduced immune complex deposits in the kidney, and resulted in improvement in proteinuria and leucopenia. The treatment downregulated

EpiVax

Cluster Report – Edratide (hCDR1) peptide

EpiVax

EpiMatrix Cluster Detail Report

File: MOZES_HCDR1 Sequence: HCRD1 Cluster: 1 March 29, 2012 (Epx Ver. 1.2)

Published Edratide sequence in Phase II paper HGYYWSWIRQPPGKGEEWI

Frame	AA Sequence	Frame	 Hydro- phobicity	Z-Score	Z-Score	Z-Score	7-Score	Z-Score	Z-Score	Z-Score	Z-Score	Hits
Jan	CYYMENTRO	Stop	1.01	1.62	1.70	0.16	2-30016	1.07	0.74	2-30016	2-30010	0
I	GIIWSWIRQ	9	-1.01	-1.05	-1.79	0.10	0.07	-1.37	-0.74	-0.79	-0.42	0
2	YYWSWIRQP	10	-1.14	-0.15	0.31	0.37	1.11	-0.10	1.06	-0.48	-0.70	0
3	YWSWIRQPP	11	-1.18	0.14	0.52	0.68	0.89	0.80	1.16	0.31	0.40	0
4	WSWIRQPPG	12	-1.08	1.48	-0.31	1.05	0.05	1.19	1.77	0.14	0.15	1
5	SWIRQPPGK	13	-1.41	-0.08	-0.92	-0.50	-0.96	0.55	0.26	0.26	-0.01	0
6	WIRQPPGKG	14	-1.37	2.29	1.27	1.97	1.28	2.62	2.35	0.88	1.26	4
7	IRQPPGKGE	15	-1.66	0.12	0.10	0.08	0.18	0.63	-0.59	0.97	0.03	0
8	RQPPGKGEE	16	-2.54	-2.45	0.29	-2.38	-2.31	-0.21	-1.45	-0.13	-0.65	0
9	QPPGKGEEW	17	-2.14	-1.47	-1.99	-1.62	-1.00	-2.67	-2.50	-2.86	-2.21	0
10	PPGKGEEWI	18	-1.26	-2.63	-1.56	-3.15	-1.36	-1.52	-2.36	-1.54	-2.89	0
11	PGKGEEWIG	19	-1.12	-1.50	-1.15	-1.61	-1.87	-1.80	-0.76	-2.12	-0.89	0
Summarized Results (29-MAR-2012)		DRB1*0101	DRB1*0301	DRB1*0401	DRB1*0701	DRB1*0801	DRB1*1101	DRB1*1301	DRB1*1501	I Total		
Maximum S	ingle Z score			2.29	1.27	1.97	1.28	2.62	2.35	0.97	1.26	
Sum of Sigr	nificant Z scores		,	2.29	0.00	1.97	0.00	2.62	4.12	0.00	0.00	11.00
Count of Significant Z Scores			1.00	0.00	1.00	0.00	1.00	2.00	0.00	0.00	5.00	
Total Assessments Performed: 88		Hydrophob	icity: -1.09	EpiMa	atrix Score: 1.9	93	EpiMat	rix Score (w	/o flanks): 1.	.93		
Scores Adjusted for Tregitope:				EpiMa	atrix Score: -7.	30	EpiMatrix Score (w/o flanks): -7.30					

Z score indicates the potential of a 9-mer frame to bind to a given HLA allele; the strength of the score is indicated by the blue shading.

Top 10%^{*} Top 5% Top 1%

All scores in the Top 5% (Z-Score >= 1.64) are considered "Hits". Scores in the top 10% (shown but not highlighted) are considered elevated, other scores are grayed out for simplicity.

Frames containing four or more alleles scoring above 1.64 are referred to as Epi-Bars and are highlighted in yellow. These frames have an increased likelihood of binding to HLA.

Frames conserved in IgG antibodies and believed to be either passively tolerated or actively regulatory are highlighted in green.

Flanking amino acids, added to stabilize the cluster during in-vitro testing, are presented in blue type face and underlined.

Hydrophobic amino acid sequences scoring above 2.0 can be difficult to synthesize as peptides. Mutated amino acids are indicated in red typeface.

✓ Tregitopes – what are they?

✓ Mechanism of Action

✓ Pre-clinical studies with Tregitopes...

✓ Have Tregitopes been in the clinic?

✓ What's the plan for Tregitopes?

Tregitope ASATI : Antigen Specific Adaptive Tolerance For Allergy Therapy

Tregitope ASATI : Antigen Specific Adaptive Tolerance Induction

Tregitope-Fusion Plans for Transition to Clinic

EpiVax

- Scale-up of HSA-Fusion E technical difficulties
 - Glycosylation
 - Truncation of fusion protein
- Development of Albumin or IgG Tregitope Fusion
- And/or individualized peptide allergen co-administration for Allergy

Next Plan Tregitopes . . . Allergy Program In Preparation

Localized, specific suppression of immune response:

IVIg Replacement therapy

Tregitope Fusion Product (TFP) in development/ ready for option/license

- Combination Therapy (ASATI) For Allergy / Spin out company ?
- Autoimmune diseases/Transplant (type 1 diabetes, multiple sclerosis) ---Option/License available except for peptides/alopecia areata/derm applications, but no restrictions for the Alb or Fc Fusion.
- **Tolerization of antibodies**: introducing Tregitopes into the sequence with minimal point mutations (licenses available)
- Tolerization of protein therapeutics:

co-expression or co-administration with immunogenic proteins --- Currently have Option/License for protein fusion in FVIII.

Science without fear.

www.epivax.com | Providence, RI | 401.272.2123 |