

The iVAX Toolkit: An in silico platform for epitope discovery with applications to human and animal vaccine design

Frances Terry¹, Guilhem Richard¹, Matthew Ardito¹, Rebecca Martin¹, Jacob Tivin¹, Leonard Moise^{1,2}, William Martin¹, Anne S. De Groot^{1,2}

¹EpiVax, Inc., Providence, RI USA, ²University of Rhode Island, Providence, RI USA

Abstract

Computational vaccine design, also known as computational vaccinology, encompasses epitope mapping, antigen selection and immunogen design using computational tools. In silico prediction of immune response to emerging infectious diseases and cancers can accelerate the design of novel and next generation vaccines. The iVAX toolkit is an integrated set of immunoinformatics algorithms that has been in development since 1998. It comprises a suite of immunoinformatics algorithms for triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, eliminating regulatory T cell epitopes, and optimizing antigens for immunogenicity and protection against disease.

iVAX harnesses computing power, genomic data, and advanced immunoinformatics tools to identify T cell epitopes capable of inducing productive T cell immune mechanisms for the generation of safe and effective vaccines. Novel algorithms have been implemented to predict peptide binding to human, murine and swine class I and class II MHC alleles. Highly immunogenic peptides conserved across multiple strains of pathogen sequences are identified using the Conservatrix, EpiMatrix and EpiAssembler algorithms. Potential vaccine candidate epitopes can be aggregated into a string-of-beads design with the VaxCAD algorithm, simultaneously minimizing deleterious junctional epitopes that may be created in the linking process. Two newer tools, discovered and refined in the past few years, include Janus Matrix and iTEM. Janus Matrix is a specially tailored homology analysis tool that examines pathogen/host sequence similarity at the MHC:TCR interface for any given peptide, and predicts potentially cross-reactive epitopes, allowing candidate sequences with potential host cross-reactivity to be preferentially excluded from vaccine constructs. iTEM enables identification of epitopes unique for specific human subjects based on individual MHC allele expression. Combining iTEM and JanusMatrix results (JiTEM) allows for selfness-adjusted individualized epitope prediction and is ideal for cancer mutanome processing and personalized cancer vaccine design.

The iVAX toolkit has been adapted to accelerate the development of targeted, safe and efficacious vaccines, which will address important global health and biodefense challenges for humans and livestock. Most recently, low-immunogenicity H7N9 influenza antigens with high human cross-conservation were engineered to include epitopes more highly cross-conserved with circulating influenza strains, resulting in a 5-fold increase in post-vaccination antibody titers compared to wild-type protein. Subsequently, the JanusMatrix tool was utilized to successfully identify cross-reactive epitopes between the MAGE A3 immunotherapeutic and human titin implicated in two fatalities among affinity-enhanced TCR cancer immunotherapy trial participants. The poor immunogenicity of unadjuvanted H7N9 vaccines illustrates the challenges associated with time-honored approaches to vaccine development, while modern cancer vaccine research has underscored the danger of auto-reactive vaccines and immunotherapeutics. We have applied immunoinformatics tools to develop safe and effective responses to these challenges. Academic and commercial collaborations are welcomed and encouraged.

Online Access

Web Based Vaccine Design Process

CONSERVATRIX:

Conserved peptides scored for epitope content

CONSERVATION ANALYSIS

CTRPNNTRK CTRPNNTRK

CTRPNNTRK	
CTRPNNTRK	_
C T R P N N T R K	

CTRPNNTRK

Conservation analysis without alignment

ST	RAIN 01	_	Q	x	s	W	Р	K	V	E	Q	F	W	A	K	н	x	W	N	х	I	S	x	I	Q	Y	L
ST	TRAIN 02	2	Q	A	S	W	Ρ	K	V	Е	х	F	W	Α	K	H	Μ	W	N	E	Ι	S	G	Ι	Q	Y	I
ST	TRAIN 03	3	Q	х	S	W	Ρ	K	Х	E	Q	F	W	Α	K	H	Μ	W	N	E	I	S	G	I	ç	Y	x
ST	TRAIN 04	Ł	Q	A	S	W	Х	K	V	E	Q	F	W	A	K	H	Μ	W	N	E	Х	S	Х	Ι	Q	Y	L
ST	TRAIN 05	5	Q	х	S	W	Ρ	K	V	E	Q	F	W	Α	K	H	Μ	W		Ε					Ç	Y	
ທ H ST	TRAIN 06	5	Q	A	S	W	Ρ	K	Х	E	Q	F	W	A	Х	H	Μ	W	N	F	I	S	G	I	Ç	Y	х
	TRAIN 07	,	Q	Х	s	W	Ρ	K	V	E	Q	F	W	Α.	K	H	М	Х	N	F	I	S	G	I	Q	Y	1
H M St M	TRAIN 08	3	Q	A	S	W	Х	K	V	E	Q	F	W	Α	K	H	Μ	W		E					Q	Y	1
	TRAIN 09		Q	Х	S	W	Ρ	K	Х	E	Q	F	W	Α	K	H	Μ	W	N	E	Х	S	Х	Ι	Х	Y	Х
z st	TRAIN 10)	Q	A	S	W	Ρ	X +~	V	Е	Q	F	W	Α	K	H	Μ	W	N	E	I	Х	G	I	Q	Y	L
\bigcirc	TRAIN 11	- (Q	Α	S						ç	F	W	Ą	K	H	Μ	W	N	E					Ç	Y	
H ST	TRAIN 12	2	Q	A	S	W	Х	K	V	E	Q	F	W	A	Х	H	Μ	W	N	F	I	S	G	Ι	Ç	Y	х
	TRAIN 13	3	Q	A	S	W	Р	K	V	E	ç	F	W	Ą	K	H	Μ	Ŵ	N	E	I	S	G	Ι	ç	Y	
ST	TRAIN 14	Ŀ	Q	A	S	W	X	K	Х	E	Q	F	W	A	K	H	Μ	W	N	E	Ι	S	Х	Ι	Q	Y	L
ST	TRAIN 15	5	Q	A	S	W	Ρ	K	V	Ε	Х	F	W	Х	Κ	H	Μ	Ŵ	N	F	I	S	G	Ι	ç	Y	Ŀ
ST	TRAIN 16	5	Q	Х	S	W	Ρ	K	V	E	Q	F	W	Ą	K	H	Μ	W	N	E	Ι	Х	G	Ι	Q	Y	L
ST	RAIN 17	7	Х	A	S	W	Х	K	V	E	Q	F	W	A	K	H	Μ	W	Ν	E	I	S	G	Ι	Ç	Y	Х
ST	TRAIN 18	3	Q	Х	S	W	Ρ	K	Х	E	Q	F	W	Α	K	H	Μ	W	N	Х	I	S	G	Ι	Q	Y	L
ST	TRAIN 19)	Q	Α	S	W	Х	K	V	E	Q	F	W	A	K	H	Μ	W	N	E	I	S	Х	Ι	Q	Y	L
ST	TRAIN 20		Q	Α	S	W	P	K	V	E	ç	F	W	A.	Х	H	Μ	Ŵ	N	F	Ι	S	G	Ι	Ç	Y	Ľ
COR	RE											F	W	Α	K	H	М	W	N	F							
						W	Р	К	v	Е	0		W					W	N	F	I	S	G	I	Q		
FLAN	IKS	ſ	Q	Α	S	W	P		v		Q	-							N	F	I	S	G	I	Q	Y	L
	TOO		0		_	T-7	D						T-7	7	72	17	M	Tet			-						
FINAL	ICS		Q	A	S	W	Р	K	V	Ε	Q	Ľ	W	A	Γ	н	M	W	N	Ľ	I	S	G	T	Q	Y	Ľ
											1														1		
ICS I	pept	id	es	p	ro	VİC	le	bi	00	ad	St	ra	In	CC	DV	er	aa	е,	bi	n	dr	nu	Iti	p	e	HL	A

EPIASSEMBLER:

Assemble conserved, promiscuous epitopes into Immunogenic Consensus Sequences (ICS)

HOMOLOGY ANALYSIS:

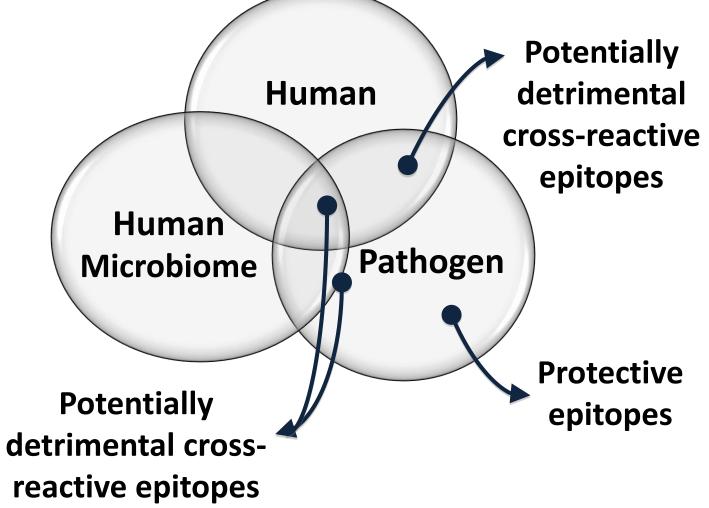
Triage candidate epitopes by evaluating their homology to host, microbiome, published seqs

Multiple Databases Available to Search: HUMAN

•Swiss-Prot, manually annotated and reviewed.

•Updated monthly.

HUMAN MICROBIOME

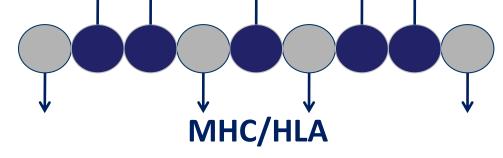

•Collected genomes from NIH Human Microbiome Project.

IEDB

•MHC Binding, T Cell Assays and MHC Ligand Elution Assays. •Updated biweekly.

<u>iVAX</u>

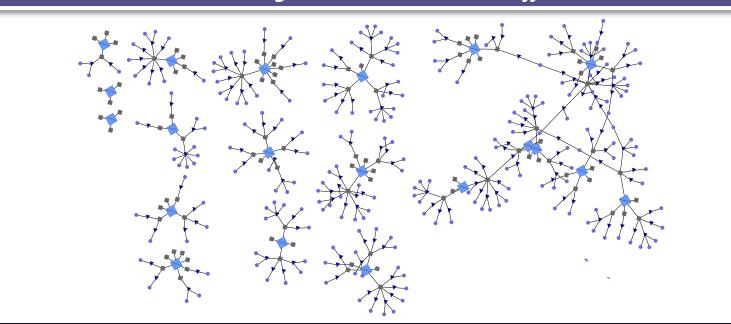
•Search against custom files.


Choose a File:	FLU-HA	+
Choose a Protein:	HUMAN	
Choose a Peptide:	HUMAN MICROBIOME	s Selected 💠
Choose a Database to Search:	✓ IEDB	

File	Input Sequence	Cluster Address (w/ Flanks)	Cluster Sequence	EpiMatrix Cluster Score (w/o Flanks)	Positive Hits	Negative Hits	Link to Alignment Report
FLU-HA	CVX-DATA	1 - 16	CPRYVKONTLKLATGM	24.3	122	10	Alignment
FLU-HA	CVX-DATA	2 - 22	VPD YASLRSLVASSGTLK FIN	34.25	8	0	Alignment
FLU-HA	CVX-DATA	3 - 20	PRGYFKIRNGKSSIMRSR	43.69	7	0	Alignment
FLU-HA	CVX-DATA	4 - 19	SRPWVRGQSSRISIYW	24.87	2	0	Alignment
FLU-HA	CVX-DATA	5 - 23	RGSVNSFFSRLNWLEKSKY	17.3	2	0	Alignment
FLU-HA	CVX-DATA	6 - 24	NKKWRLFVKRSKAYSNCYP	29.97	2	0	Alignment
FLU-HA	CVX-DATA	7 - 27	PGRILLINSIGNLIAPRGYFK	44.48	7	0	Alignment

TCR

At the level of an HLA-bound peptide, certain amino acids are in contact with the HLA molecule itself while others are accessible to the T-cell receptor (TCR). If TCR-facing residues from a pathogenic epitope are conserved among multiple HLA-binding sequences from the human genome, the pathogenic epitope may activate T cells specific to these human proteins.



Protein ID	Protein Description	Start Position	Sequence	Cluster Score	Janus- Adjusted Score	Δ	# Janus Matches	DRB1* 0101	DRB1* 0301	DRB1* 0401	DRB1* 0701	DRB1* 0801	DRB1* 1101	DRB1* 1301	DRB1* 1501
CHICAGO-2013	hemagglutinin	102-123	VPDYASLRSLVASSGSLEFSNE	30.9	11.44	19.46									
5.		102	VPDYASLRS			1	0	-0.57	-0.7	0.12	-0.32	-0.06	-0.15	0.78	0.93
		103	PDYASLRSL			Î	0	-0.56	0.1	-1.02	-0.2	-0.49	-0.14	-0.38	0.07
		104	DYASLRSLV				0	0.73	1.34	-0.33	1.33	0.05	0.73	0.88	0.74
		105	YASLRSLVA				7	2.56	1.32	2.78	2.3	1.89	2.62	1.67	2.25
sp Q8NAA5 F211A HUMAN	Leucine-rich repeat-containing protein FAM211A	98	YASFRNLVD					1.14	-0.01	1.68	1.08	2.24	1.19	1.37	1.85
sp 000555 CAC1A HUMAN	Voltage-dependent P/Q-type calcium channel subunit	597	WASLENLVV					2.71	0.8	2.6	2.55	1.81	2.45	1.16	1.82
sp Q15878 CAC1E HUMAN	Voltage-dependent R-type calcium channel subunit a	586	WASLENLVV					2.71	0.8	2.6	2.55	1.81	2.45	1.16	1.82
sp Q6ZSC3 RBM43 HUMAN	RNA-binding protein 43	203	LASVRTLVP					0.73	0.81	1.67	1.11	0.58	1.39	1.15	1.05
sp P10253 LYAG HUMAN	Lysosomal alpha-glucosidase	581	IASHRALVK					0.65	0.26	1.44	1.46	0.32	0.71	1.92	0.92
sp 094762 RECQ5 HUMAN	ATP-dependent DNA helicase Q5	294	KASERTLVQ				2	0.69	0.38	1.92	0.5	-0.24	0.9	0.31	-0.23
sp Q99497 PARK7 HUMAN	Protein DJ-1	1	MASKRALVI					0.97	1.49	0.41	1.63	1.29	0.78	2.07	1.04
Contract of the Contract of Contract		106	ASLRSLVAS				0	-0.5	-0.33	-0.86	-1.18	0.42	-0.25	0.74	0.13
		107	SLRSLVASS				0	1.11	1.48	1.57	0.51	0.66	1.54	1.34	0.1
		108	LRSLVASSG				10	2.78	2.04	2.55	1.63	2.7	2.46	2.12	2.44
sp A6NFD8 HELT HUMAN	Hairy and enhancer of split-related protein HELT	102	VRSLVLSSA					1.37	1.83	1.4	1.15	1.77	2.19	1.92	2.13
sp Q7L2K0 CP059 HUMAN	Uncharacterized protein C16orf59	108	SRSIVTSSG					1.36	0.85	1.88	0.43	0.76	1.24	1.08	1.25
sp Q32NB8 PGPS1 HUMAN	CDP-diacylglycerolglycerol-3-phosphate 3-phospha	524	LRSGVVSSA					1.39	1.89	1.92	1.35	0.85	1.28	1.3	1.1
sp P38567 HYALP HUMAN	Hyaluronidase PH-20	11	FRSFVKSSG					1.64	1.87	1.78	0.37	3.19	2.77	2.96	2.83
sp Q92187 SIA8D HUMAN	CMP-N-acetylneuraminate-poly-alpha-2,8-sialyltrans	45	SRSLVNSSD					1.2	0.6	0.96	0.95	1.83	0.64	0.72	1.15
sp 015111 IKKA HUMAN	Inhibitor of nuclear factor kappa-B kinase subunit	663	ARSLVGSSL					2.05	0.7	1.11	1.65	0.68	0.73	0.81	1.49
sp Q8WUI4 HDAC7 HUMAN	Histone deacetylase 7	76	KRSAVASSV					1.79	1.54	1.51	2.17	0.85	0.84	1.39	1.81
sp 075916 RGS9 HUMAN	Regulator of G-protein signaling 9	237	MRSTVKSSV					1.23	1.63	0.57	1.53	1.51	1.18	2.31	2.04
sp P42858 HD HUMAN	Huntingtin	457	SRSDVSSSA					0.98	1.97	1.88	0.57	0.39	0.22	0.75	0.75
sp Q8NA82 MARHA HUMAN	Probable E3 ubiguitin-protein ligase MARCH10	462	PRSSVNSSY					0.89	1.82	0.83	0.63	-0.4	0.42	1.35	0.8
		109	RSLVASSGS				0	0.75	0.94	0.9	0.66	0.09	0.68	1.03	1.47
		110	SLVASSGSL			Ô. II	2	1.09	1.25	0.56	1.87	0.47	0.1	0.13	1.78
sp A6NMZ7 CO6A6 HUMAN	Collagen alpha-6(VI) chain	625	FLVDSSGSI					1.85	2.86	1.84	2.02	1.42	0.58	0.65	1.56
sp P12111 CO6A3 HUMAN	Collagen alpha-3(VI) chain	1119	ILVSSAGSR					1.4	2.43	0.89	1.65	1.26	1.03	0.97	1.49
		111	LVASSGSLE				6	1.32	1.98	1.09	1.41	1.3	0.63	1.51	0.98
sp POCG39 POTEJ HUMAN	POTE ankyrin domain family member J	892	MVASSSSLE				-	1.16	2.33	1.26	1.82	1.54	0.86	1.85	1.37
sp P49643 PRI2 HUMAN	DNA primase large subunit	166	IVASSPSLS			÷		2.29	2.69	2.26	2.1	1.63	2.22	2.21	2.04
sp P08172 ACM2 HUMAN	Muscarinic acetylcholine receptor M2	28	LVAGSLSLV					0.65	1.74	0.6	1.14	0.6	0.94	1.16	1.87
sp Q9NPI6 DCP1A HUMAN	mRNA-decapping enzyme 1A	445	RVAASASLS				1	1.39	1.9	1.6	0.94	1	0.94	1.75	1.9
sp 075643 U520 HUMAN	U5 small nuclear ribonucleoprotein 200 kDa helicas	1487	IVALSSSLS				1	2.92	2.23	2.94	2.3	2.47	2.71	2.31	2.81
sp P49754 VPS41 HUMAN	Vacuolar protein sorting-associated protein 41 hom	764	LVADSLSLL					0.87	2.73	1.2	0.88	1.17	0.59	1.5	1.35
		112	VASSGSLEF				0	0.77	1.66	1.38	1.98	0.36	1.06	1.45	1.2
		113	ASSGSLEFS				0	-1.13	0.2	-0.59	-1.53	-0.51	-0.27	-0.71	-0.29
		114	SSGSLEFSN				0	-0.65	-0.63	-1.67	-0.12	-1	-0.37	-1.01	0
		115	SGSLEFSNE				0	-1.28	-0.49	-1.2	-0.86	0	-0.96	-0.36	-1.28

Differential responses may be expected depending on the particular autologous protein with which any given vaccine candidate epitope shares a TCR profile. A detailed printable report allows vaccine designers to review all possible cross-reactive relationships.

- Predicted 9-mer epitope from a source protein or peptide
- 🔺 9-mer from human proteome, 100% TCR face identical to source epitope
- Human protein where cross-reactive epitopes are present

Epitope Networks: Visually distinguish T_{rea} (above) from T_{eff} epitopes (below)

Шау	# HOMOLOGY HITS		AA IDENTITIES	EPITOPE ID	T CELL	MHC BINDING
		VPDYASLRSLVASSGTLKFIN		CVX-DATA-2	n/a	n/a
	1	CYPYDEDFNWT	20/21	7431	POSITIVE	NONE
	1	**EGFNWTGVTQNGGSSAC	18/21	10850	POSITIVE	NONE
	1	CYPYD*****	15/21	<u>138761</u>	POSITIVE	NONE
8 HOMOLOGY HITS	1	YD******	14/21	73603	POSITIVE	POSITIVE
	1	CYPYD******	14/21	7430	POSITIVE	NONE
	1	***E_**	15/21	73443	POSITIVE	POSITIVE
-	1	******	14/21	113677	POSITIVE	NONE
	1	PYD********	12/21	50080	POSITIVE	NONE
Total:	8					

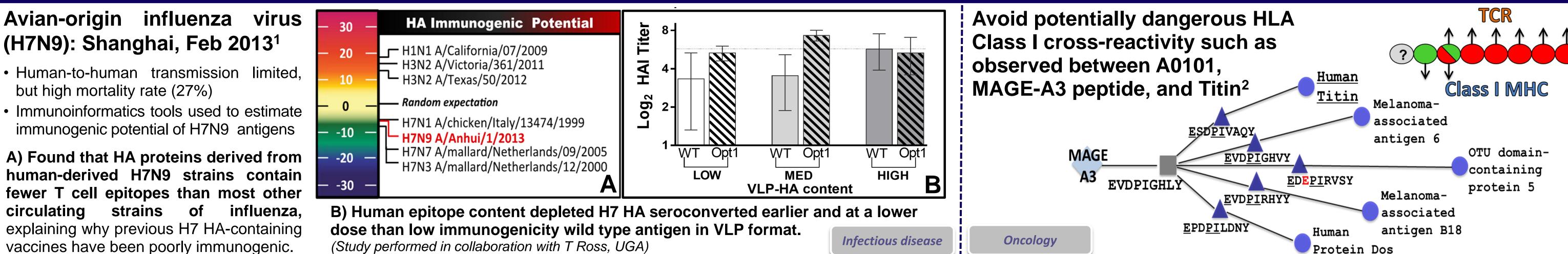
The research

proposed and

analyzed in this work


was supported by

NIH1U19AI082642


www.epivax.com

After triage, generate string of beads in optimal epitope order

VAXCAD: Organizes component epitope sequences in order to reduce potential nonsense immunogenicity at junctions between ICS

Case Studies

Discussion and Conclusions

The recent swine-origin H1N1 influenza and avian-origin H7N9 outbreaks¹ have illustrated the difficulties associated with 'standard' approaches to vaccine development, while recent cancer vaccine research² has underscored the danger of auto-reactive vaccines and immunotherapeutics. These studies have provided an opportunity to apply immunoinformatics tools to guide the development of a safe and effective public health response. With proof of principle established in animal models for three out of five vaccines for which we currently have prototypes^{3,4,5}, the iVAX toolkit is poised to accelerate the development of targeted, efficacious vaccines which will address important global health and biodefense challenges. Collaborations are accepted and encouraged.

References / Acknowledgements

¹De Groot AS, Ardito M, Terry F, Levitz L, Ross TM, Moise L, Martin W. Low immunogenicity predicted for emerging avian-origin H7N9: Implication for influenza vaccine design. Hum Vaccin Immunother. 2013 May;9(5):950-6. ONAL ²Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL,... & Binder-Scholl GK. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013 Aug 8; 122(6), 863-71. ³Moss SF, Moise L, Lee DS, Kim W, Zhang S, Lee J, Rogers AB, Martin W, De Groot AS. HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine. 2011 Mar 3; 29(11):2085-91. ⁴Moise L, Buller RM, Schriewer J, Lee J, Frey SE, Weiner DB, Martin W, De Groot AS. VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone. Vaccine. 2011 Jan 10; 29(3):501-11.

⁵Gregory SH, Mott S, Phung J, Lee J, Moise L, McMurry JA, Martin W, De Groot AS. Epitope-based vaccination against pneumonic tularemia. Vaccine. 2009 Aug 27; 27(39):5299-306.

For questions regarding immunogenicity screening and vaccine design, please contact: Katie Porter at 401-272-2123; or at info@epivax.com